
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 18
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Study & Comparative Analysis of

Various Sorting Techniques
HOMA FIRDAUS

Research Guide: Govind Prasad Arya

Abstract:-Sorting refers to the storage of data in a sorted manner or arranging data in an increasing or decreasing fashion so
as to make searching purpose easy and fast. Sorting comes into picture with the term Searching in short we can say that it
improves the efficiency of searching and hence reduces the complexity of problem . There are so many things in our real life
that we need to search, like a particular record in database, arranging roll numbers of students , a particular telephone number,
any particular page in a book etc ,all this can be easily done if we sort them in a particular order like for searching a word in a
dictionary we sort them in alphabetical order Sorting techniques mainly depends on two parameters. First parameter is the
execution time of program, which means time taken for execution of program. Second is the space, which means space taken
by the program

Index Terms— Sorting Techniques and sorting algorithms with examples

 ————————————————————

1 INTRODUCTION
What is sorting?

Arranging data in a particular format is called

sorting. Sorting algorithm specifies that how a

data is to be arranged ,it provides a way to

arrange data. There are two broad categories of

sorting methods:

With the help sorting data searching is

optimized to a very high level . Sorting is also

used to represent data in more readable

formats. Some of the examples of sorting in real

life scenarios are following.

Telephone Directory − Telephone directory

keeps telephone no. of people sorted on their

names so that names can be searched.

Dictionary − Dictionary keeps words in

alphabetical order so that searching of any work

becomes easy.

2. DIFFERENT TYPES OF SORTING
TECHNIQUES

2.1 INTERNAL SORTING

Internal sorting takes place in the main memory,

where we can take advantage of the random

access nature of the main memory.This is done

when small amount of data is to be sorted.

 Internal (In Memory)

• Insertion Sort
• Selection sort
• Bubble Sort
• Quick Sort
• Heap Sort
• Shell Sort

2.2 EXTERNAL SORTING

External sorting is necessary when the number

and size of objects are prohibited to be stored in

the main memory and external storage is

required during sorting.

 External (Appropriate For Secondary Storage)
• Merge Sort
• Polyphase Sort

Apart from all the above mentioned sorting there
are some other types of sorting which are
discussed below in detail:

2.1.1. INSERTION SORT

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 19
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Insertion sort is a simple sorting algorithm that is
relatively efficient for small lists(data) and
mostly sorted lists and is not efficient for large
data. It takes elements from the list one by one
and inserts them in their correct position into a
new sorted list. New list obtained by sorting and
the remaining elements can share the array's
space in array, but insertion sort is expensive as
it requires shifting all following elements over by
one. Shell sort is a variant of insertion sort that is
more efficient for larger lists.

ALGORITHM FOR INSERTION SORT

Insertion sort iterates by taking one input
element at a time and checking with the other
elements and finally generates a sorted output
lists. In each iteration insertion sort removes one
element from the input data finds the location
which belongs within the sorted list and inserts it
there This process is repeated until we get the
desired set of sorted output .

1. Sorting is typically done in-place, by
iterating up the array and growing the
sorted list behind it i.e on the left side
usually. At each array-position, it checks
the value
there against the largest value in the
sorted list if larger, it leaves the element
in place and moves to the next. If
smaller, it finds the correct position
within the sorted list, shifts all the larger
values up to make a space, and inserts
into that correct position.

We take the below array for example

6 5 7 1 4 2 8

• Now checking the adjacent array
position that that whether the element is
smaller or not if it smaller than it is
shifted back in the array and the array
becomes

5 6 7 1 4 2 8

• As 7 is not smaller than 6 therefore it
will remain in the same position and
further checking is done within the
array and 1 is found smaller ,and the
array becomes

1 5 6 7 4 2 8

• The final resulted array after sorting and
going through the same procedure is

2.1.2 SELECTION SORT

It is a comparison sort which is inefficient on
large lists(data), and generally performs worse
than the similar insertion sort. Selection sort uses
fewer writes, and thus is used when write
performance is a limiting factor.Selection sort is
known for its simplicity, and also has
performance advantages over more complicated
algorithms in certain situations.

The algorithm finds the minimum value, swaps
it with the value in the first position, and repeats
these steps for the remainder of the list.It does no
more than n swaps, and thus is useful where
swapping is very expensive.

ALGORITHM FOR SELECTION SORT

1 The list is divided into two parts, sorted part is
at left end and unsorted part is at right end.

2. Initially sorted part is empty and

unsorted part is entire list.

3. Smallest element is selected from the

unsorted array and swapped with the

leftmost element and that element

becomes part of sorted array. This

process continues by moving unsorted

element to the right.

4. This algorithm is not suitable for large

data sets.

We take the below depicted array for our

example.

14 33 27 10 35 19 42 44

5 For the first position in the sorted list,

the whole list is scanned . The first

position where 14 is stored presently,

we search the whole list and find that

1 2 4 5 6 7 8

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 20
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

10 is the lowest value in the whole list.

So we replace 14 with 10. After one

iteration 10, appears in the first position

of sorted list.

10 33 27 14 35 19 42 44

For the second position, where 33 is placed, we
start scanning the rest of the list and find that 14
is the second lowest value in the list and it
should appear at the second place. We swap
these values.

After two iterations, two data with leat values

are positioned at the the beginning in the sorted

manner.

10 14 27 33 35 19 42 44

6 For the first position in the sorted list,

the whole list is scanned . The first

position where 14 is stored presently,

we search the whole list and find that

10 is the lowest value in the whole list.

So we replace 14 with 10. After one

iteration 10, appears in the first position

of sorted list.

2.1.3 BUBBLE SORT
This algorithm works by comparing each item in
the list with the item next to it, and swapping
them if required. In other words, the largest
element has bubbled to the top of the array and
the largest element is swapped with the smallest
element by comparing each element with the top
bubbled element . The algorithm repeats this
process until the bubbled element is placed at its
position .
Example. Here is one step of the algorithm. The
largest element - 20- is bubbled to the top:

20,5, 4,15,18
5,20,4,15,18
5,4,20,15,18
5,4,15,20,18
5,4,15,20,18

After 20, 5is the bubbled element .The whole
process repeats for each element until finally
sorted list of elements is obtained.

2.1.4 QUICK SORT

Quick sort is a highly efficient sorting algorithm

which is quite efficient for large sized data and

is based on partitioning in which the array is

portioned in two parts one contains smaller

value than pivot element and other contains

larger value than pivot element .

ALGORITHM FOR QUICK SORT

 Step 1. Choosing the Pivot Element a. Normally
we choose the first, last or the middle element as
pivot. This can harm us badly as the pivot can

 the smallest or the largest element, thus leaving
one of the partitions empty.
b. We should choose the Median of the first, last
and middle elements. If there are N elements,
then the ceiling of N/2 is taken as the pivot
element.
Example:

7 3 25 6 15 17 1 2 20 10

First Element: 7
Middle Element: 15
Last Element: 10
Therefore the median on [7,15,10] is 7 which is
taken as the pivot element.
Step 2. Partitioning
a. First thing is to get the pivot out of the way
and swapping it with the last number.
Example: (shown using the above array
elements)

7 3 2 6 15 17

b. Now we want the elements greater than pivot
to be on the right side of it and similarly the
elements less than pivot to be on the left side of
it.
For this we define 2 pointers, namely i and j. i
being at the first index and j being and the last
index of the array.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 21
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

7 While i is less than j . i is incremented
until we find an element greater than
pivot.

8 Similarly, while j is greater j is
decremented until we find an element
less than pivot.

9 After both i and j stop we swap the
elements at the indexes
of i and j respectively.

c. Pivot is restored
 After performing the above steps we will
get this as our output:
[3, 2, 6, 1] [7] [15.10,25, 18, 17]

Step 3. Recursively Sort the left and right part of
the pivot

2.16. HEAP SORT

Heap is a way to implement a priority queue
.Heaps have same complexity as a balanced
search tree but:

• they can easily be kept in an array
• they are much simpler than a balanced

search tree
• they are cheaper to run in practice

It is also a type of sorting technique in which
sorting is done in done ways either max heap is
formed which contains max value at the top and
least at bottom or min heap which contains min
value at the top and max value at the bottom.

The below given array is taken and sorting is
done in this array:-

The array represented as a tree but not ordered

Start with the rightmost node at height 1 - the
node at position 3 = Size/2.

It has one greater child.

After processing array[3] the situation is

Next comes array[2]. Its children are
smaller, so no rearranging is needed.

The whole process runs and sorting is done as
mentioned in the above way

 [Fig]

Finally sorted heap tree

2.2.1 MERGE SORT
Merge-sort is based on the divide-and-conquer
paradigm. It involves the following three steps:

1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 22
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

2. Divide the array into two (or more)
subarrays

3. Sort each subarray (Conquer)
4. Merge them into one to get the final

sorted array

In the above given example the whole array
is broken in two parts in such a way that
single element is found at the last.Now these
two elements for ex 40 and 28 are compared
with each other and placed in the array and
at the same time the other two elements are
compared and with each other then with the
previous elements i.e with 40 and 28 .Lastly
we get an array of elements which are
sorted.In this way sorting is done by
splitting the array first and then combining
them together

2.3 SORTING TECHNIQUES WITH
ADDITIONAL STORAGE REQUIREMENT

COUNTSORT

Counting Sort is an sorting algorithm, which
sorts the integers(or Objects) given in a
specific range. In this numbering is done in
such a way that it shows the occurrence of

that number.
ALGORITHM OF COUNT SORT
 Take two arrays, Count[] and Result[]

and given array is input[].
 Count[] will store the counts of each

numbers in the given array.
 Update the Count[] so that each index

will store the sum till previous step.
(Count[i]=Count[i] + Count[i-1]). Now
updated Count[] array will reflect the
actual position of each integer in Result[].

 Now check the input array taking one
element at a time, Count[input[i]] will tell
you the index position of input[i] in
Result[].

2.3.1 RADIX SORT

Radix sort was developed for sorting large
integers, but it treats an integer as a string of
digits, so it is really a string sorting algorithm
unlike count sort. It compares the digits of the
numbers and then it arranges the data according
to tha basis.
The working of radix sort is explained below
with the help of given example
Example:

Consider a group of numbers. It is given by the
list:
123, 002, 999, 609, 111
STEP1:
Sort the list of numbers according to the
ascending order of least significant bit. The
sorted list is given by:
111, 002, 123, 999, 609
STEP2:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 23
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Then sort the list of numbers according to the
ascending order of 1st significant bit. The sorted
list is given by:
609, 002, 111, 123, 999
STEP3:
Then sort the list of numbers according to the
ascending order of most significant bit. The
sorted list is given by:

002 ,111, 123, 609 ,99

3. ANALYSIS

3.1 TIME COMPLEXITY COMPARISON OF

SORTING ALGORITHMS

Algorithm Time Complexity

Best Average Worst

Quick sort

O(n
log(n))

O(n
log(n)) O(n^2)

Merge sort

O(n
log(n))

O(n
log(n))

O(n
log(n))

Heap sort

O(n
log(n))

O(n
log(n))

O(n
log(n))

Bubble Sort O(n) O(n^2) O(n^2)

Insertion
Sort

O(n) O(n^2) O(n^2)

Select Sort O(n^2) O(n^2) O(n^2)

Count Sort O(n+k) O(n+k) O(n^2)

Radix Sort O(nk) O(nk) O(nk)
IJSER

http://www.ijser.org/
http://scanftree.com/Data_Structure/Quick-Sort
http://scanftree.com/Data_Structure/Merge-sort
http://scanftree.com/Data_Structure/Heap-sort
http://scanftree.com/Data_Structure/bubble-sort
http://scanftree.com/Data_Structure/Insertion-sort
http://scanftree.com/Data_Structure/Insertion-sort
http://en.wikipedia.org/wiki/Selection_sort
http://scanftree.com/Data_Structure/radix-sort

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 24
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3.2 SPACE COMPLEXITY COMPARISON OF
SORTING ALGORITHMS

4 CONCLUSION

Insertion sort is a simple sorting algorithm that
is relatively efficient for small lists and mostly-
sorted list and is good only for sorting small
arrays (usually less than 100 items). In fact, the
smaller the array, the faster insertion sort is
compared to any other sorting algorithm.
However, being an O(n2) algorithm, it becomes
very slow when the size of the array increases.
Heap sort is not the fastest possible in all (nor in
most) cases it also makes sure that it will not take
extra memory, which is often a nice feature.
Mege sort is Given that it is always O(nlogn), it is
a very good alternative. Its main problem is that
it requires a second array with the same size as
the array to be sorted, thus doubling the memory
requirements.Quicksort is the most popular
sorting algorithm and it is usually very fast. The
main problem with quicksort is that it's not
trustworthy: Its worse-case scenario is O(n2) (in
the worst case it's as slow, if not even a bit slower
than insertion sort) .Bubble sort is a

straightforward and simplistic method of sorting
data While simple, this algorithm is highly
inefficient and is rarely used except in
education.

5 REFERENCE
https://www.google.co.in/
http://faculty.simpson.edu/
http://scanftree.com/

Algorithm Worst Case Auxiliary Space
Complexity

Quick sort O(n)

Merge sort O(n)

Heap sort O(1)

Bubble Sort O(1)

Insertion Sort O(1)

Select Sort O(1)

Count sort O(n+k)

Radix Sort O(n+k)
 IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Insertion_sort
http://en.wikipedia.org/wiki/Quick_sort
http://faculty.simpson.edu/
http://scanftree.com/Data_Structure/Quick-Sort
http://scanftree.com/Data_Structure/Merge-sort
http://scanftree.com/Data_Structure/Heap-sort
http://scanftree.com/Data_Structure/bubble-sort
http://scanftree.com/Data_Structure/Insertion-sort
http://en.wikipedia.org/wiki/Selection_sort
http://scanftree.com/Data_Structure/radix-sort

	ALGORITHM FOR INSERTION SORT
	Insertion sort iterates by taking one input element at a time and checking with the other elements and finally generates a sorted output lists. In each iteration insertion sort removes one element from the input data finds the location which belongs w...
	Sorting is typically done in-place, by iterating up the array and growing the sorted list behind it i.e on the left side usually. At each array-position, it checks the value
	there against the largest value in the sorted list if larger, it leaves the element in place and moves to the next. If smaller, it finds the correct position within the sorted list, shifts all the larger values up to make a space, and inserts into tha...
	SELECTION SORT
	BUBBLE SORT

	ALGORITHM FOR QUICK SORT
	RADIX SORT

